
New Directions in Software Quality
Assurance Automation

Mikhail Auguston

Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943

Phone: (831)-656-2607
Email: maugusto@nps.edu

Abstract. A formalism is suggested for specifying environment behavior models for software
test scenario generation based on attributed event grammars. The environment model may
contain descriptions of the events triggered by the software outputs and of the hazardous states
in which the system could arrive, thus providing a framework for specifying properties of
software behavior within the given environment. The behavior of the system can be rendered as
an event set with two partial ordering relations: precedence and inclusion (event trace). This
formalism may be used as a basis for automation tools for test generation, test result monitoring
and verification, for experiments to gather statistics about software safety, and for evaluating of
dependencies of system’s behavior on environment parameters. The monitoring activities can
be implemented within a uniform framework as computations over event traces.

Keywords: environment models, reactive systems, requirements specification and verification,
testing and safety assessment automation, event traces.

1 Introduction

Reactive and real-time systems are at the core of many safety-critical software
applications. In [1][2][3][4] an approach to testing automation for reactive and
real-time software systems based on attributed event grammars (AEG) has
been introduced. The main idea is to specify the environment behavior model
as a set of events that control the inputs for the system under the test (SUT)
and that may adjust the behavior depending on the outputs provided by the
SUT (adaptive testing [14]).

2. The Environment Model
The notion of event is central for our approach. An event is any detectable

action in the environment that could be relevant to the operation of the SUT.
A keyboard button pressed by the user, a group of alarm sensors triggered by
an intruder, a particular stage of a chemical reaction monitored by the system,
and the detection of an enemy missile are examples of events. In our approach

mailto:maugusto@nps.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
New Directions in Software Quality Assurance Automation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Computer Science,1 University
Circle,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
In Proceedings of the 14th International Command and Control Research and Technology Symposium
(ICCRTS) was held Jun 15-17, 2009, in Washington, DC

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

64

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

an event usually is a time interval, and has a beginning, an end, and duration.
An event has attributes, such as type and timing attributes.

There are two basic relations defined for events: precedence (PRECEDES)

and inclusion (IN). Two events may be ordered, or one event may appear
inside another event. The behavior of the environment can be represented as a
set of events with these two basic relations defined for them (event trace).
Usually event traces have a certain structure (or constraints) in a given
environment. The basic relations define two partial orders of events. For
example, two events are not necessarily ordered under the PRECEDES
relation, that is, they can happen concurrently.

The structure of possible event traces can be specified by event grammar.

Here identifiers stand for event types, sequence denotes precedence of events,
(…|…) denotes alternative, * means repetition zero or more times of ordered
events, {a, b} denotes a set of two events a and b without an ordering relation
between them, and {…}* denotes a set of zero or more events without an
ordering relation between them. The rule A::= B C means that an event of the
type A contains (IN relation) ordered events of types B and C correspondingly
(PRECEDES relation).

Example 1

OfficeAlarmSystem::= {DoorMonitoring,

 WindowMonitoring }

The OfficeAlarmSystem run is a set of two concurrent monitoring threads.

DoorMonitoring::= DoorSensor *

The DoorMonitoring is a composite event, which contains a sequence of

ordered events of the type DoorSensor.

WindowMonitoring::= WindowSensor *

DoorSensor::= (DoorClosed | DoorAlarm)

The DoorSensor event may contain one of two possible alternatives.

WindowSensor::= (WindowClosed | WindowAlarm)

This event grammar defines a set of possible event traces – a model of a
certain environment. The purpose is to use it as a production grammar for
random event trace generation by traversing grammar rules and making
random selections of alternatives and numbers of repetitions.

2.1 Event Attributes

An event may have attributes and actions associated with it. Each event
type may have a different attribute set. Event grammar rules can be decorated
with attribute evaluation rules. The /action/ is performed immediately after
the preceding event is completed. Events usually have timing attributes like
begin_time, end_time, and duration. Some of those attributes can be defined
in the grammar by appropriate actions, while others may be calculated by
appropriate default rules. Attributes can be either inherited or synthesized, we
assume that all attribute evaluations are accomplished in a single pass
and the event grammar is traversed top-down, left-to-right for producing
a particular event trace. The interface with the SUT can be specified by an
action that sends input values to the SUT or listens for a message sent by the
SUT. This may be a subroutine in a common programming language like C or
Java that hides the necessary wrapping code.

Example 2.

 An (over)simplified environment model for a missile defense system that
tracks radar sensors and at certain moment sends a command to proceed with
an interception.
Attack::= { Missile_launch } * (=N)

The Attack event contains N parallel Missile_launch events.

Missile_launch::=
 Boost_stage
 Middle_stage
 WHEN(Middle_stage.completed) Boom

The Boom event (which happens if the interception attempts have failed)
represents an environment event, which the SUT should try to avoid, or a
“hazard state” in which the system may arrive.
Middle_stage::=
 / Middle_stage.completed := True/
 (move
 CATCH SUT_launch_interception(hit_coordinates)
 WHEN (hit_coordinates == Middle_stage.coordinates)

 [p(p1) interception
 / Middle_stage.completed := False;
 send_hit_input(Middle_stage .coordinates);
 BREAK; /]
) * (<=M, EVERY 50 msec)

The sequence of move events within Middle_stage event may be

interrupted by receiving an external event from the SUT. This will suspend
the move event sequence and will either continue with event interception
(with probability p1), which simulates the missile interception event triggered
by the SUT, followed by the BREAK command, which terminates the event
iteration, or will resume the move sequence. This model allows several
interception attempts during the same Middle_stage event. In general, external
events generated by the SUT may be broadcasted to several event listeners in
the AEG, or may be exclusive and be consumed by just one of the listeners.
These interface details are encapsulated in the listener Boolean subroutines
like SUT_launch_interception(hit_coordinates) where the parameter
hit_coordinates is passed by reference.

move ::= / adjust(ENCLOSING Middle_stage .coordinates) ;
 send_radar_signal(ENCLOSING Middle_stage.coordinates); /

This rule provides attribute calculations and sends an input to the SUT

simulating the inputs from radar sensors. The ENCLOSING construct
provides access to the attributes of parent event.

It should be pointed out that most of the event trace generation and attribute

evaluation can be accomplished during the generation time, and the test driver
extracted from the event trace contains only actions and their time stamps
(like send/catch subroutine calls) that should be postponed to the run time.
This makes it amenable for fulfilling real time constraints for the input
streams needed to be fed into SUT. The event trace provides a “scaffold” for
building a light-weight and efficient test driver. Since the event trace
generation from the AEG still may contain random elements, like alternative
and number of iteration selection, the number of different scenarios generated
from the same AEG is potentially unlimited.

3. Behavior Properties Specification

The next problem to be addressed after the system behavior model is set up is
the formalism specifying properties of the behavior. As a unifying framework

we came up with the concept of a computation over the event trace. This
approach implies the design of a special programming language for
computations over the event traces. In [6], [8], [7], [9] a language FORMAN,
based on functional paradigm and the use of event patterns and aggregate
operations over events, is suggested.

Event patterns describe the structure of events with possible context
conditions. Execution paths can be described by path expressions over events.
This makes it possible to write assertions not only about pre-conditions and
post-conditions at event trace points, but also about data flows in the entire
trace.

The subroutine calls for inputs in the SUT and for catching outputs from the
SUT can be considered also as events with obvious precedence and inclusion
relations with the rest of event trace. The parameter values at the beginning
and the end of those events are specific attributes that provide the opportunity
to write assertions about system input/output values at different points in the
execution history.

3.1 The Language for Computations over Event Traces

FORMAN is a high-level specification language for expressing intended
behavior or known types of error conditions when debugging or testing
programs. FORMAN supplies a means for writing assertions about events and
event sequences and sets. Monitoring activities can be implemented as
computations over event traces. Typical examples of monitoring include:

 Assertion checking (test oracles)

 Debugging queries

 Profiles

 Performance measurements

 Behaviour visualization

The following provides an outline of the FORMAN constructs. More details
are available in [6][8][7]. The environment model from Example 2 will be
used as a background for further examples.

Event patterns

x: Middle_stage & x.Value_at_end(completed)== False

This pattern matches an event of the type Middle_stage if and only if the
value of the completed attribute at the end of this event is False.

List of events

Assuming that m is an event of the type Middle_stage.

[move FROM m]

This creates a list of move events from the enclosing even m preserving the
precedence relation between them.

List of values

Assuming that m is an event of the type Middle_stage.

[x: move FROM m APPLY x.Value_at_end(m.coordinates
)]

This creates a list of values of coordinates attribute of the enclosing
Middle_stage event m taken at the end of each move event inside m.
Note that the value of m.coordinates may change after each move
event.

Aggregate operations

Assuming that m is an event of the type Middle_stage.

OR/[x: SUT_launch_interception FROM m

 APPLY x.param[1] == x.Value_at_end(m.coordinates)]

This expression yields a Boolean value depending on whether there is at least
one instance x of SUT_launch_interception event inside m that yields
True for the expression x.param[1] ==
x.Value_at_end(m.coordinates). The x.param[1] denotes
the value of the first actual parameter of the subroutine
SUT_launch_interception call. This aggregate operation can be
abbreviated as:

EXISTS x: SUT_launch_interception FROM m

 (x.param[1] == x.Value_at_end(m.coordinates))

In a similar way, FOREACH quantifier can be introduced as an abbreviation
for the AND/ aggregate operation.

Generic requirements for the SUT behaviour within the given environment
can be specified in FORMAN. The following examples illustrate this.

Example 3.

The requirements for the SUT may include for example the following: “There
is at least one interception attempt for each Missile_launch event within
the Attack event.”

FOREACH x: Missile_launch FROM Attack

 EXISTS y: SUT_launch_interception FROM x

Example 4.

The first interception attempt should happen no later than 1 sec after the
beginning of the Missile_launch event.

FOREACH x: Missile_launch FROM Attack

 EXISTS y: SUT_launch_interception FROM x

y.begin_time – x.begin_time < 1 sec

Example 5.

There should not be unintercepted missile launches.

CARD/[Boom FROM Attack] == 0

The examples of FORMAN expressions above represent computations over
the event traces and can be performed during the test run or after it based on a
log file collected during the test run. This supports the requirement tracing as
a part of testing process.

This framework provides means for expressing quantifiers over events and
ordering and inclusion relations for events and is comparable with the
expressive power of other specification formalisms for behavior specification,
such as temporal logic and abstract event traces [15], [16].

Figure 1 outlines the testing automation architecture based on AEG.

4. Automated Safety Assessment

NASA-STD-8719.13A [24] defines risk as a function of the possible
frequency of occurrence of an undesired event, the potential severity of
resulting consequences, and the uncertainties associated with the frequency
and severity. It may be a challenge to estimate those for real systems because
of size and lack of good analytical model. Here we suggest a pragmatic
approach to this problem. An environment model may contain events and
attributes representing some hazard situations that may occur during the run
time as a result of SUT interaction with the environment. This feature of the
AEG model provides a basis for automated system safety analysis. We can
estimate the risk of arriving in a hazard state by running scenarios of SUT
interacting with the environment model.

In the previous example, the Boom event occurs in certain scenarios
depending on the SUT outputs received by the test driver and random choices
determined by the given probabilities. From the point of view of SUT this is a
highly undesirable event. If we run a large enough number of (automatically
generated) tests, the statistics gathered give some approximation for the risk
of getting to this hazardous state. This becomes a simple constructive process
of performing experiments with SUT behavior within the given environment
model (“software-in-the-loop” simulations). Large sets of different scenarios
(and, respectively, test cases extracted from them) can be generated from the
same AEG model since each scenario generation is based on some
(pseudo)random choices during the generation process.

4.1 Parameterized Safety Analysis

We can do a qualitative analysis as well and ask questions like “what has
contributed to this outcome?” We can change some parameters of the
environment model, or change some parameters in the SUT and repeat the set
of tests. If the frequency of reaching a hazardous state changes, we can
answer the question asked. These kinds of experiments with model parameters
could be done automatically in a systematic way.

Experimenting with increasing or decreasing the number of missile

launches N, the duration of particular missile launch M, and the probability of
interception p1 in the previous example, we can determine what impact those
parameters have on the probability of hazardous outcome, and find thresholds
for SUT behavior in terms of N, M, and p1 values.

We suggest to use the combinatorial testing technique based on orthogonal

arrays [19], an approach well familiar to statisticians, to conduct the
experiments with parameterized environment models. In 1997, researchers at
Telcordia Technologies (formerly Bell Communications Research, or
Bellcore) published a paper by Siddharta Dalal et al., “The Combinatorial
Design Approach to Automatic Test Generation [18].” Telcordia's studies
suggest that “most field faults were caused by either incorrect single values or
by an interaction of pairs of values.” If that's generally correct, we ought to
focus our testing on the risk of single-mode and double-mode faults. The
same conjecture that stipulates that the fault in behavior of the SUT in most
cases depends either on a single parameter value or on an interaction of a pair
of parameter values could be applied to the system safety testing.

The rationale for using orthogonal arrays for experiments with the SUT is

similar to the rationale for the use of orthogonal arrays for experiments in
other engineering domains [20], [22], [23]. The use of an orthogonal array
guarantees that all pair-wise samples are represented evenly for statistical
purposes.

Combinatorial approach will significantly reduce the number of experiments

needed to establish statistically sound conclusions about probabilities to reach hazard
states for different environment model settings. In order to apply combinatorial
testing techniques the values of model parameters have to be split into a finite number
of equivalence classes, a technique well known in software component testing [21].

Figure 2 outlines the major steps in the testing and safety assessment process based

on AEG.

http://www.argreenhouse.com/

Figure 2. Testing and system safety assessment automation framework based
on attributed event grammars as environment models.

5. Related work

Traditionally, modeling approaches used for software development focus
on the system under development. These models emphasize the reactive
aspects of the system behavior, which are typically modeled using statechart
formalism. In contrast, the purpose of the environment model is to generate
stimuli for the system under test. An environment model emphasizes the
productive aspects of the behavior.

It has become a common practice for engineers to analyze system behaviors

from an external point of view using use cases. In UML (Unified Modeling
Language) [26] use case scenarios are written in natural language and focus
on the events and responses between the actors and the system. Functional

requirements can be derived from the description of events received by the
system and the expected responses generated by the system.

The major paradigms for modeling system behavior are based on different

variations of finite state machines. Active research in this area focuses on
different aspects of behavior specification based on UML statecharts, message
sequence diagrams, or other types of extended finite state machines, like
timing automata [27] or Petri nets.

State machines are typically used for modeling systems. System models are

built around the notion of a transition in response to the environment stimulus.
Grammars are common vehicles for generating structured sets of inputs.
While grammars and state machines are considered to be dual, researchers
have long recognized the power of state machines as acceptors and grammars
as generators.

A major feature of our approach is the notion of an event trace as a formal

model of behavior. Event grammars are one of the possible frameworks to
utilize this notion. They are text-based, have a smaller semantic distance from
the use case scenarios than the state machines, and are well suited to model
environments described via use case scenarios. Event grammars are
convenient in specifying dynamic environments with an arbitrary number of
actors (and concurrent events), whereas state machines are effective for
modeling static environments (with a predetermined numbers of actors).

In [28], Wang and Parnas proposed to use trace assertions to formally

specify the externally observable behavior of a software module and presented
a trace simulator to symbolically interpret the trace assertions and simulate the
externally observable behavior of the module specified. Their approach is
based on algebraic specifications and term rewriting techniques and is only
applicable to non-real-time applications.

In [29], Alfonso et al. presented a formal visual language for expressing

real-time system constraints as event scenarios (events and responses) and a
tool to translate the scenarios into observer timed automata, which can be
used to study properties of the formal model of the system under analysis via
model checking and run-time verification. While there are a lot of similarities
between the approach presented in [29] and ours, the former is effective for
modeling static environments (with fixed scenarios) whereas ours, which is
based on event grammar, is more effective in specifying dynamic
environments with an arbitrary number of actors (and concurrent events).

Context-free grammars have been used for test generation, in particular, to
check compiler implementation, such as in [30] and [31]. Maurer’s article
[31] provides an outlook in the use of enhanced context-free grammars for
generation of test data.

6. Advantages of the suggested approach

 Test result verification is an important aspect of testing automation.
The AEG approach assumes that all interaction between the SUT and
environment model flows through the subroutine calls attached to the
environment events. This implies that it will be straightforward to instrument
the interface points with necessary code to monitor and verify the information
flow between the SUT and the environment model. In fact, this template
closely resembles the Aspect-Oriented Programming paradigm [33].

Traditionally reactive systems and their environments are modeled with
some kind of finite state machine, like statecharts or timing automata. For the
purposes of scenario (and corresponding test case) generation, the AEG
approach may have several useful features, in particular:

 It is based on a precise behavior model in terms of an event trace with

precedence and inclusion relations, well suited to capture hierarchical
and concurrent behaviors. Since an event may be shared by other events,
the model can represent synchronization events as well.

 The control structure suggested by the event grammar notation
(sequence, alternative, iteration, concurrent event set) and the top-down,
left-to-right order of traversal seems to be intuitive and close to the tradi-
tional imperative programming style, hence facilitating the design of
models.

 Data flow of attributes is integrated with the control flow (i.e., event
trace), and AEG notation provides means for ease of navigation within
the derivation tree (e.g., the ENCLOSING event construct for
referencing parent event attributes on any distance in the derivation tree).

 The probabilities for alternatives or number of iterations may be attached
to meaningful events in the model and are more intuitive and less
numerous than in Markov models based on finite state machines. This
provides for a natural definition of functional profiles for scenario
generation.

The main advantages of the suggested approach may be summarized as

follows.

 Environment models specified by attributed event grammars provide for

automated generation of a large number of pseudo-random (but satisfying
the constraints) test drivers. This feature provides for gathering of large
enough statistical data for safety assessment experiments.

 All attribute values which don’t depend on the SUT output can be
calculated at the generation time. As a result the generated test driver
contains only actions that should be postponed to the run time (like
sending inputs to the SUT and listening to the SUT outputs), has a low
overhead, and could be used as a real-time test driver.

 As any notation based on formal grammars AEG is well structured,
hierarchical, and scalable.

 The environment model may contain events which represent hazardous
states of the environment. Experiments with the SUT embedded in the
environment model (“software-in-the-loop”) provide a constructive
method for quantitative and qualitative assessment of software safety.

 Different environment models for different purposes can be designed,
such as for testing extreme scenarios by increasing probability or number
of certain events, or for load testing. The same safety assessment
methodology as described above may be applied for these special cases as
well.

 The environment model itself is an asset and could be reused.

 It addresses the regression testing problem – generated test drivers can be
saved and reused. We expect that environment models will be changed
relatively seldom unless serious requirement errors are discovered during
testing.

 Event traces generated from the AEG model represent examples of SUT
interaction with the environment, and are in fact use cases, that could be
useful for requirements specification and other prototyping tasks.

The novelty of our approach is in the notion of a formal system behavior
model based on event grammars for automated generation of test scenarios
and test drivers.

C2 systems to a large degree are reactive and real-time systems, and
therefore can benefit from the AEG approach. Our previous work has
provided a basis for testing and debugging automation tool design within this
framework Error! Reference source not found.[9][10][11][12][13]. The
feasibility has been proven by the first prototype implementation of AEG
Error! Reference source not found.[2][3] and case studies, like Infusion

Pump example Error! Reference source not found. and environment models
for US Marine Corps Technology Center.

References

[1] M.Auguston, B.Michael, M.Shing, “Environment Behavior Models for
Automation of Testing and Assessment of System Safety,” Information and
Software Technology, Elsevier, Volume 48, Issue 10, October 2006, pp. 971-980

[2] Mikhail Auguston, James Bret Michael, Man-Tak Shing, Environment Behavior
Models for Scenario Generation and Testing Automation, in Proceedings of the
First International Workshop on Advances in Model-Based Software Testing (A-
MOST'05), the 27th International Conference on Software Engineering ICSE’05,
May 15-16, 2005, St. Louis, USA, http://a-most.argreenhouse.com , This article
has also been published on-line in the ACM SIGSOFT Software Engineering
Notes Volume 30 , Issue 4 (July 2005).

[3] Mikhail Auguston, James Bret Michael, Man-Tak Shing, Test Automation and
Safety Assessment in Rapid Systems Prototyping, in Proceedings of 16th IEEE
International Workshop on Rapid System Prototyping, June 8-10, 2005,
Montreal, Canada, pp.188-194.

[4] Mikhail Auguston, James Bret Michael, Man-Tak Shing, and David L. Floodeen,
“Using Attributed Event Grammar Environment Models for Automated Test
Generation and Software Risk Assessment of System-of-Systems”, in the
Proceedings of 2005 IEEE International Conference on Systems, Man, and
Cybernetics, Special Session on Recent Advances in Engineering Systems-of-
Systems to Support Joint and Coalition Warfighters, October 10-12, 2005, The
Big Island, Hawaii, USA, pp.1870-1875

[5] Harsha Tummala, James Bret Michael, Man-Tak Shing, Mikhail Auguston,
David Little, Zachary Pace, Implementation and Analysis of Environment
Behavior Models as a Tool for Testing Real-Time, Reactive System, in
Proceedings of the 2006 IEEE International Conference on System of Systems
Engineering, Los Angeles, CA, USA - April 2006. pp. 260-265

[6] M. Auguston, "FORMAN -- A Program Formal Annotation Language,"
Proceedings of the 5th Israel Conference on Computer Systems and Software
Engineering, Gerclia, May 1991, IEEE Computer Society Press, pp.149-154.

[7] P. Fritzson, M. Auguston, N. Shahmehri, "Using Assertions in Declarative and
Operational Models for Automated Debugging," The Journal of Systems and
Software 25, 1994, pp. 223-239.

[8] M. Auguston, "Program Behavior Model Based on Event Grammar and Its
Application for Debugging Automation," in Proceedings of the 2nd International
Workshop on Automated and Algorithmic Debugging, Saint-Malo, France, May
1995.

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235642%232006%23999519989%23633047%23FLA%23&_cdi=5642&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=bfff0a9e2aad14e9e41640460cc3a3e4
http://a-most.argreenhouse.com/

[9] M. Auguston, "Building Program Behavior Models," in Proceedings of European
Conference on Artificial Intelligence ECAI-98, Workshop on Spatial and
Temporal Reasoning, Brighton, England, August 23-28, 1998, pp. 19-26.

[10] M.Auguston, Assertion Checker for the C Programming Language based on
Computations over event traces, in Proceedings of the Fourth International
Workshop on Algorithmic and Automatic Debugging, AADEBUG'2000,
Munich, Germany, August 28-30, 2000, pp.90-99 on-line proceedings at
http://www.irisa.fr/lande/ducasse/aadebug2000/proceedings.html .

[11] M.Auguston, C.Jeffery, S.Underwood, A Framework for Automatic Debugging,
in Proceedings of the 17th IEEE International Conference on Automated
Software Engineering, September 23-27, 2002, Edinburgh, UK, IEEE Computer
Society Press, pp.217-222.

[12] Mikhail Auguston, Clinton Jeffery, Scott Underwood, A Monitoring Language
for Run Time and Post-Mortem Behavior Analysis and Visualization, in the
Proceedings of 5th International Workshop on Algorithmic and Automatic
Debugging AADEBUG 2003, Ghent, Belgium, September 8-10, 2003, pp. 41-54
(also on the CoRR web site at http://arxiv.org/abs/cs/0310025) .

[13] C.Jeffery, M.Auguston, S.Underwood, Towards Fully Automatic Execution
Monitoring, in Proceedings of Radical Innovations of Software and Systems
Engineering in the Future: 9th International Monterey Workshop, RISSEF 2002,
Venice, Italy, Oct. 2002, Revised Papers (Editors: Martin Wirsing, Alexander
Knapp, Simonetta Balsamo), Lecture Notes in Computer Science, Springer
Verlag, Vol. 2941, March 2004, pp. 204 – 218.

[14] R. M.Hierons, H.Ural, “Concerning the Ordering of Adaptive Test Sequences,”
in Proc. 23rd IFIP Int. Conf. on Formal Techniques for Networked and
Distributed Systems, Berlin, Germany, Sept. 2003, Berlin: Springer, Lecture
Notes in Computer Science, Vol. 2767, pp. 289-302.

[15] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification,. Springer-Verlag, 1992.

[16] A.Mazurkiewicz, Trace Theory, in W. Brauer et al., editors, Petri Nets,
Applications and Relationship to other Models of Concurrency, Vol. 255, Lecture
Notes in Computer Science, Springer Verlag, 1987, pp.279-324.

[17] IBM Combinatorial Test Services, http://www.alphaworks.ibm.com/tech/cts

[18] Cohen D. M., Dalal S. R., Fredman M. L., and Patton G. C., The AETG System:
An approach to Testing Based on Combinatorial Design. IEEE Transactions on
Software Engineering, 23 (1997), pp. 437-444.

[19] IBM Combinatorial Test Services, http://www.alphaworks.ibm.com/tech/cts

[20] Hedayat, A.S., N. J. A. Sloane and John Stufken, Orthogonal Arrays: Theory and
Applications, Springer Verlag, 1999

[21] G. J. Myers, The Art of Software Testing, Wiley, New York, 1979

http://www.irisa.fr/lande/ducasse/aadebug2000/proceedings.html
http://arxiv.org/abs/cs/0310025
http://citeseer.ist.psu.edu/context/9751/0
http://citeseer.ist.psu.edu/context/9751/0
http://www.alphaworks.ibm.com/tech/cts
http://www.alphaworks.ibm.com/tech/cts
http://www.amazon.com/exec/obidos/ASIN/0471358460/michaelbolton
http://www.amazon.com/exec/obidos/ASIN/0471358460/michaelbolton

[22] Phadke, M.S. "Quality Engineering Using Robust Design", Prentice Hall,
Englewood Cliff, NJ. November 1989.

[23] Taguchi, Genichi. "System of Experimental Design", Edited by Don Clausing.
New York: UNIPUB/Krass International Publications, Volume 1 & 2, 1987

[24] Software Safety, NASA Technical Standard. NASA-STD-8719.13A, Sept. 1997,
http://satc.gsfc.nasa.gov/assure/nss8719_13.html.

[25] Mori, G., Paternò, F., Santoro, C.: CTTE: Support for Developing and Analysing
Task Models for Interactive System Design, IEEE Transactions on Software
Engineering, Vol. 28, No. 9, IEEE Press, 2002.

[26] Jacobson, I., Booch, G., and Rumbaugh, J. The Unified Software Development
Process, Reading, Mass.: Addison-Wesley, 1999.

[27] Hong, H. S. and Lee, I. Automatic test generation from specifications for control-
flow and data-flow coverage criteria, in Proc. Monterey Workshop, Monterey,
Calif.: Naval Postgraduate School (Monterey, Calif., June 2001), pp.230-246.

[28] Wang, Y. and Parnas, D. Simulating the behavior of software modules by trace
rewriting, IEEE Trans. Software Eng. 20, 10 (Oct. 1994), pp. 750-759.

[29] Alfonso, A., Braberman, V., Kicillof, N., and Olivero, A. Visual timed event
scenarios, in Proc. 26th Int. Conf. on Software Engineering, ACM Press
(Edinburgh, Scot., May 2004), pp. 168-177.

[30] McKeeman, W. M. Differential testing for software, Digital Tech. J. 10, 1
(1998), pp. 100-107.

[31] Maurer, P. Generating test data with enhanced context-free grammars, IEEE
Software, July 1990, pp.50-55

[32] S. Fraser and D. Mancl. No silver bullet: Software engineering reloaded. IEEE
Software, 25(1):91-94, 2008

[33] Kiczales, Gregor; John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin (1997). "Aspect-Oriented Programming". Proceedings of
the European Conference on Object-Oriented Programming, vol.1241. pp. 220–242.

http://satc.gsfc.nasa.gov/assure/nss8719_13.html
http://giove.cnuce.cnr.it/CTTE/tse-published.pdf
http://giove.cnuce.cnr.it/CTTE/tse-published.pdf
http://citeseer.ist.psu.edu/kiczales97aspectoriented.html

1

Mikhail Auguston

Computer Science Department
Naval Postgraduate School, Monterey, California

maugusto@nps.edu

New Directions in Software
Quality Assurance Automation

2

Black Box Testing

The main problems:
How to create test cases
How to run a test case
How to verify the results of a test
run

System
Under Test

(SUT)

Outputs = Expected Outputs?Inputs

3

Black Box testing

Environment

System
Under Test

(SUT)

Outputs = Expected Outputs?Inputs

The SUT may be a complex reactive
real-time C3I system

sensors actuators

Outputs of the SUT
may affect the inputs

4

Testing methodology

We suggest (pseudo-)random test generation
based on the environment models.

It is best suited for a very special class of
programs: reactive and real-time. These
programs are of special interest for DoD-

 related applications.

5

The model of environment
 (an approach to behavior modeling)

An event

is any detectable action that is
executed in the “black box”

environment

An event is a time interval

An event has attributes: e.g., type, timing attributes, etc.

There are two basic relations for events:
precedence

and inclusion

The behavior of environment can be represented as a set of
events (event trace)

6

The model of environment

Usually event traces have a certain structure (or
constraints) in a given environment

Examples:
1.

Shoot_a_gun

is a sequence of a Fire

event

followed by either a Hit

or a Miss event
2. Driving_a_car

is an event that may be

represented as a sequence of zero or more
events of types
go_straight, turn_left, turn_right, or stop

7

The model of environment
The structure of possible event traces for a

given environment can be specified using event
grammar

1.

Shoot_a_gun::= Fire (Hit | Miss)
Shooting::= Shoot_a_gun *

2.

Driving_a_car::=
go_straight
(go_straight | turn_left | turn_right) *
stop

go_straight::= (accelerate | decelerate | cruise)

8

Sequential and parallel events
The precedence relation defines the partial order of

events
Two events are not necessary ordered; i.e., they can

happen concurrently

Examples

Shoot_a_gun::= Fire (Hit | Miss)
Shooting::= (* Shoot_a_gun

*)

Shooting_Competition::= {* Shooting *}

This is a
sequence

Those
events
may be
parallel

9

Visual representation of event trace
 (not all events and relations are shown…)

Shooting_Competition

Shooting

Shooting

Shoot_a_gun

Shoot_a_gun

Fire Hit

Fire Miss

IN relation

PRECEDES relation

Fire Miss

10

Event attributes

Shoot_a_gun::= Fire (Hit /Shoot_a_gun. points = Rand[1..10];
ENCLOSING Shooting .points += Shoot_a_gun

.points; /

|
Miss /Shoot_a_gun. points = 0;/)

Shooting::= / Shooting .points = 0; /
(* Shoot_a_gun

/Shooting .ammo -=1;/

*) While (Shooting .ammo > 0)

Shooting_Competition

::= /num = 0;/
{*

/Shooting .id = num++;
Shooting .ammo =10;/

Shooting *} (Rand[2..100])

11

Production grammars

Attribute event grammars (AEG) are intended to be
used as a vehicle for automated random event trace
generation

It is assumed that the AEG is traversed top-down
 and left-to-right

and only once

to produce a

particular event trace
Randomized decisions about what alternative to take

and how many times to perform the iteration should
be made during the trace generation

Attribute values are evaluated during this traversal

12

Using AEG to generate event traces
and inputs to the SUT

We can provide the probability of selecting an alternative

Shoot_a_gun::= Fire
(P(0.3)

Hit
/Send_input_to_SUT(ENCLOSING Shooting .id, Hit .time);/

|
--

this simulates SUT sensor input

P(0.7)

Miss)

We can generate a large number of event traces satisfying the
constraints imposed by the event grammar

13

The grammar can be used in order to generate event
traces and SUT inputs, for example:
Shooting_Competition:

Shooting: Shoot_a_gun: Fire
Hit

/Send_SUT_input(Hit.time)/
Shooting: Shoot_a_gun: Fire

Hit
/Send_SUT_input(Hit.time)/

Shoot_a_gun: Fire
Miss

Shoot_a_gun: Fire
Miss

Shoot_a_gun: Fire
Hit

/Send_SUT_input(Hit.time)/

Production grammar

Timeline

14

Use cases

Event traces are essentially use cases

Examples of event traces can be useful
for requirements engineering,
prototyping, and

system documentation

15

Example when SUT outputs are incorporated into the
environment model

Attack::= {* Missile_launch *} (Rand[1..5])
Missile_launch::= boost middle_stage WHEN(middle_stage.completed)

Boom
middle_stage::= / middle_stage.completed

= true;/
(* CATCH

interception_launched

(hit_coordinates)

--

this external event intercepts SUT output
WHEN (hit_coordinates == middle_stage .coordinates)
[P(0.1)

hit_hard
/ middle_stage.completed= false;

send_SUT_input(middle_stage .coordinates);
--

this simulates SUT sensor input
Break; / --

breaks the iteration
]

OTHERWISE move
*)

move ::= /adjust (ENCLOSING middle_stage .coordinates) ;
send_SUT_input(ENCLOSING middle_stage .coordinates);
--

this simulates SUT sensor input
DELAY(50 msec); /

16

Prototype implementation

The test generator based on
attributed event grammars has been
implemented at NPS

It takes an AEG and generates a test
driver in Java.

17

How it works

Environment
model

represented as
an event
grammar

Generator

Test driver
(in C, Java, or assembly

language)

SUT

Run time
monitor

How to
create test

cases

How to run test
case

How to
monitor the

results

18

Software safety assessment
In the previous example, the Boom

event will occur in

certain scenarios depending on the SUT outputs
received by the test driver and random choices
determined by the given probabilities

If we run large enough number of (automatically
generated) tests, the statistics gathered gives some
approximation for the risk of getting to the hazardous
state. This becomes a very constructive process of
performing experiments

with SUT behavior within the

given environment model (“software-in-the-loop”
 simulations)

19

Qualitative Risk Analysis

Attack::= { Missile_launch } * (<=N)
Missile_launch::= boost middle_stage Boom
middle_stage::= (CATCH

interception_launched(hit_coordinates)
--

this external event intercepts SUT output
[P(p1)

hit_hard
/send_hit_input(middle_stage.coordinates);

Break; /]
OTHERWISE

move
)*

Experimenting with increasing or decreasing N

and
p1

we can conclude what impact those parameters

have on the probability of a hazardous outcome,
and find thresholds for SUT behavior in terms of
N and p1

values

20

Qualitative Risk Analysis (2)

We can change some parameters in the model and
repeat the set of tests. If the frequency of
reaching a hazardous state changes, we can find out
how the parameter values influence the probability
to reach a hazard state

We suggest to use the combinatorial testing
technique

based on orthogonal arrays, an approach

well familiar to statisticians

21

Qualitative Risk Analysis (3)
 The same conjecture that stipulates that the fault in behavior

of the SUT in most cases depends either on a single parameter
value

or on an interaction of a pair of parameter values

could
be applied to the system safety testing. This conjecture still
has to be verified by experiments

 Combinatorial approach will significantly reduce the number

of
experiments needed to establish statistically sound conclusions
about probabilities to reach hazard state for different
environment model settings

 In order to apply combinatorial testing techniques the values
of model parameters have to be split into a finite number of
equivalence classes, a technique well known in software
component testing

22

SUT safety assessment with automated
scenario generation

Environment

Model

(with parameters)

Scenario
generator

SUT
“black box”

Test

driver

Test

Results

Insert a set
of model parameters

(tool under development)

Parameter tuple
combinatorial generator

(IBM tool)
Statistical evaluation

of results
Model’s

parameter
intervals

Test
driver

23

The main advantages
The whole testing process can be automated
The AEG formalism provides powerful high-level

abstractions

for environment modeling
It is possible to run many more

test cases with better

chances to succeed in exposing an error
It addresses the regression testing

problem –

 generated test drivers can be saved and reused.
AEG is well structured, hierarchical, and scalable
The environment model itself is an asset and could be

reused

24

Why it will fly
 Environment model specified by AEG provides for high-level

domain-specific formalism

for testing automation
 The generated test driver is efficient

and could be used for real-

 time test cases
 Different environment models can be designed; e.g., for testing

extreme scenarios

by increasing probabilities of certain events, or
for load testing

 Experiments running SUT with the environment model provide a
constructive method for quantitative and even qualitative
software

safety

assessment
 Environment models can be designed on early stages of system

design, can provide environment simulation scenarios or use cases,
and can be used for tuning the requirements and for

prototyping

 efforts

25

Questions, please?

26

Backup slides

27

Example –

simple calculator environment model

Use_calculator: (* Perform_calculation

*);
Perform_calculation:

Enter_number

Enter_operator

Enter_number
WHEN (Enter_operator.operation

== ‘+’)
/ Perform_calculation.result

=
Enter_number[1].value + Enter_number[2].value; /

ELSE
/ Perform_calculation.result

=
Enter_number[1].value -

Enter_number[2].value; /
[P(0.7)

Show_result

];

28

Example –

simple calculator environment model

Enter_number: / Enter_number.value= 0; /
(* Press_digit_button

/ Enter_number.digit

= RAND[0..9];
Enter_number.value

=
Enter_number.value

* 10 + Enter_number.digit;
enter_digit(Enter_number.digit); /

*) Rand[1..6];
Enter_operator:

(P(0.5)

/ enter_operation(‘+’);
Enter_operator

.operation= ’+’; /

|
P(0.5)

/ enter_operation(‘-’);
Enter_operator

.operation= ’-’; /

) ;

Show_result: /show_result();/

;

29

Example 2 –Infusion Pump model

CARA_environment: { Patient, LSTAT, Pump

};

Patient:

/ Patient.bleeding_rate= BR; /
(* / Patient.volume

+=
ENCLOSING CARA_environment

->
Pump.Flow

–

Patient.bleeding_rate;
Patient.blood_pressure

=
Patient.volume/50 –

10;
Patient.bleeding_rate

+= RAND[-9..9]; /
WHEN

(Patient.blood_pressure

> MINBP)
Normal_condition

ELSE
Critical_condition

*) [EVERY 1 sec] ;

30

Example 2 –Infusion Pump model

LSTAT: Power_on

/ send_power_on(); /
(* / send_arterial_blood_pressure(

ENCLOSING CARA_environment->
Patient.blood_pressure); /

*) [EVERY 1 sec]

;

Pump: Plugged_in
/ send_plugged_in();

Pump.rotation_rate

= RR;
Pump.voltage

= V; /
{ Voltage_monitoring, Pumping };

31

Example 2 –Infusion Pump model
Voltage_monitoring: (* / ENCLOSING Pump.EMF_voltage

=
ENCLOSING Pump.rotation_rate

* REMF;
send_pump_EMF_voltage(

ENCLOSING Pump.EMF_voltage); /
*) [EVERY 5 sec]

;
Pumping:

(* / ENCLOSING Pump. rotation_rate

=
ENCLOSING Pump. voltage * VRR;

ENCLOSING Pump. flow =
ENCLOSING Pump. rotation_rate

* RRF; /
CATCH

set_pump_voltage(ENCLOSING Pump.voltage)
Voltage_changed
[P(p1)

Occlusion
/ ENCLOSING Pump.occlusion_on

= True;
send_occlusion_on(); /

]
WHEN (ENCLOSING Pump.occlusion_on)
[P(p2)

/ ENCLOSING Pump.occlusion_on

=False;
send_occlusion_off(); /

]
*) [EVERY 1 sec]

;

32

Backup slides
Program monitoring and

test oracles
(How to verify the results of a test run)

33

Objective:

to develop unifying principles for program
monitoring activities

Suggested solution:

to define a precise model of
program behavior as a set of events –

event trace

Monitoring activities in software design can be
implemented as computations over program
execution traces.

Examples:

Assertion checking (test oracles)

Debugging queries

Profiles

Performance measurements

Behavior visualization

34

Program Behavior Models

Program monitoring activities can be specified in a
uniform way using program behavior models

based on

the event notion
An event

corresponds to any detectable action; e.g.,

subroutine call, expression evaluation, message
passing, etc. An event corresponds to a time interval

Two partial order binary relations are defined for
events: precedence

and inclusion

An event has attributes:

type, duration, program
state at beginning or end of the event, value,…

35

Program Behavior Models
Event grammar

specifies the constraints on

configurations of events generated at the
run time (in the form of axioms, or
“lightweight semantics”

of the target

language)

Some axioms are generic; e.g., transitivity
and distributivity

A PRECEDES B and B PRECEDES C A PRECEDES C

A IN B and B PRECEDES C A PRECEDES C

36

Example of an Event Grammar
ex_prog:: ex_stmt *
ex_stmt:: ex_assignmt | ex_read_stmt | …
ex_assignmt:: eval_expr destination

ex_prog

ex_assignmt

eval_expr destination

PRECEDES

IN

Example of an event trace

37

Program Monitoring

Monitoring activities: assertion checking,
profiles, performance measurements,
dynamic QoS metrics, visualization,
debugging queries, intrusion detection
Program monitoring can be specified in terms
of computations over event traces
We introduce a specific language FORMAN
to describe computations over event traces
(based on event patterns and aggregate
operations over events)

38

FORMAN language

Event patterns
x: func_call & x.name == “A”

eval_expr :: (variable)

List of events
[exec_assignmt FROM ex_prog]

List of values
[x: exec_assignmt FROM ex_prog APPLY x.value]

39

FORMAN language

 Aggregate Operations

MAX/[x: exec_assignmt FROM ex_prog APPLY x.value]

AND/[x: exec_assignmt FROM ex_prog APPLY x.value > 17]

Or

FOREACH x: exec_assignmt FROM ex_prog x.value > 17

40

Examples
1)

Profile

SAY("Number of function A calls is "
CARD[x: func_call & x.name == "A"

FROM ex_prog]

2) Generic debugging rule (typical error description)

FOREACH e: eval_expr :: (v: variable)
FROM ex_prog

EXISTS d: destination FROM e.PREV_PATH
v.source_code = d.source_code

ONFAIL SAY("Uninitialized variable "
v.source_code "is used in expression " e)

Event pattern

Aggregate
operation

Event
attribute

41

Examples

3) Debugging query
SAY("The history of variable x "
[d: destination & d.source_code == "x" FROM ex_prog

APPLY d.value])

4) Traditional debugging print statements
FOREACH f: func_call & f.name == "A"

FROM ex_prog
f.value_at_begin(

printf("variable x is %d\n", x))

Expression
Evaluated at the run time

Event attribute

42

Example of event trace representing a synchronization event
(send/receive a message)

par --launches two parallel processes
seq -- first parallel thread

stmt1
channel1 ! Out-expr -- sends a message
…

seq -- another parallel thread
stmt2
channel1 ? Var -- receives a message
…

Ex -program

Ex -PAR

Ex -par -process

Ex -par -process

Ex -stmt1
send

receiveEx -stmt2 Ex -stmt3

Eval -out -expr

wait

Rendez -vous

Ex -assignmentParallel
thread

Parallel
thread

43

Program visualization (UFO project)
Visualization prototype for Unicon/ALAMO (Jointly with

C.Jeffery, NMSU)

Point plot example for a binary search program

44

The novelty claims of our approach
Uniform framework

for program monitoring based on

precise behavior models and event trace computations
Computations on the event traces can be implemented in
a nondestructive

way via automatic instrumentation of

the source code or even of the executables (Dyninst
 approach)

Can specify generic trace computations: typical bug
detection, dynamic QoS metrics, profiles, visualization, …
Both

functional

and

non-functional

requirements can be

monitored
Yet another approach to the aspect-oriented

paradigm

45

Accomplished projects and work in progress
Assertion checker for a Pascal subset (via interpreter)

Assertion checker for the C language (via source code instrumentation)

Assertion checker and visualization tool for the Unicon language (via
Virtual Machine monitors)

Dynamic QoS metrics, UniFrame project (via glue and wrapper
instrumentation), funded by ONR

Intrusion detection and countermeasures (via Linux kernel library
instrumentation using NAI GSWTK), funded by the Department of
Justice Homeland Security Program

Automated test driver generator for reactive real time systems based on
AEG environment models, funded by Missile Defense Agency

46

Some publications
M. Auguston, Program Behavior Model Based on Event Grammar and its Application for
Debugging Automation, 2nd Int’l Workshop on Automated and Algorithmic Debugging,
AADEBUG'95, Saint-Malo, May 1995, pp. 277-291.

M. Auguston, A. Gates, M. Lujan, Defining a Program Behavior Model for Dynamic
Analyzers, 9th International Conference on Software Engineering and Knowledge
Engineering, SEKE'97, Madrid, June 1997, pp. 257-262.

M.Auguston, Assertion Checker for the C Programming Language based on computations
over event traces, in Proceedings of the Fourth International Workshop on Algorithmic and
Automatic Debugging, AADEBUG'2000, Munich, August 28-30, 2000, pp.90-99 on-line
proceedings at http://www.irisa.fr/lande/ducasse/aadebug2000/proceedings.html

M. Auguston, C. Jeffery and S. Underwood. A Framework for Automatic Debugging.
Proceedings of the IEEE 17th International Conference on Automated Software
Engineering, ASE'02, Edinburgh, September 2002, IEEE Computer Society Press, pp.217-
222.

Mikhail Auguston, James Bret Michael, Man-Tak Shing, Environment Behavior Models for
Scenario Generation and Testing Automation, in Proceedings of the First International
Workshop on Advances in Model-Based Software Testing (A-MOST'05), the 27th
International Conference on Software Engineering ICSE’05, May 15-16, 2005, St. Louis,
USA, http://a-most.argreenhouse.com, also in the ACM Digital Library

http://a-most.argreenhouse.com/

47

Summary of the event grammar
approach

Behavior models based on event grammars provide a
uniform framework for software testing and debugging
automation

Can be implemented in a nondestructive

way via
automatic instrumentation

Automated tools can be built to support all phases

of the
testing process

Provides a good potential for reuse: environment models,
generic debugging rules, test drivers for regression
testing

Provides high-level abstractions for testing and
debugging tasks, hence is easy to learn and use

Well suited for reactive real-time

system testing

48

Why bother?
Testing and debugging consume more

than 50%

of total software
development cost.

If the proposed research is transferred
into practice and reduces costs by 1%

 of the 50% of the $400 billion
software industry, the potential
economic impact would be around
$2 billion

per year.

	017a
	2. The Environment Model

	017a
	2. The Environment Model
	2.1 Event Attributes
	3.1 The Language for Computations over Event Traces

	4. Automated Safety Assessment
	4.1 Parameterized Safety Analysis

	5. Related work
	6. Advantages of the suggested approach
	[20] Hedayat, A.S., N. J. A. Sloane and John Stufken, Orthogonal Arrays: Theory and Applications, Springer Verlag, 1999

	017
	New Directions in Software Quality Assurance Automation
	Black Box Testing
	Black Box testing
	Testing methodology
	The model of environment�(an approach to behavior modeling)
	The model of environment
	The model of environment
	Sequential and parallel events
	Visual representation of event trace�(not all events and relations are shown…)
	Event attributes
	Production grammars
	Using AEG to generate event traces and inputs to the SUT
	Production grammar
	Use cases
	Example when SUT outputs are incorporated into the environment model
	Prototype implementation
	How it works
	Software safety assessment
	Qualitative Risk Analysis
	Qualitative Risk Analysis (2)
	Qualitative Risk Analysis (3)
	SUT safety assessment with automated scenario generation
	The main advantages
	Why it will fly
	Questions, please?
	Backup slides
	Example – simple calculator environment model
	Example – simple calculator environment model
	Example 2 –Infusion Pump model
	Example 2 –Infusion Pump model
	Example 2 –Infusion Pump model
	Slide Number 32
	Slide Number 33
	Program Behavior Models
	Program Behavior Models
	Example of an Event Grammar
	Program Monitoring
	FORMAN language
	FORMAN language
	Examples
	Examples
	Slide Number 42
	Program visualization (UFO project)
	The novelty claims of our approach
	Accomplished projects and work in progress
	Some publications
	Summary of the event grammar approach
	Why bother?

